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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.



Zero-Shot ImageNet Accuracy
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Applications of CLIP
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Zero-shot transfer of CLIP to ImageNet
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You can also ask about object attributes

Question | What is the specie of flower in the picture ?
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The specie of flower in the picture is daisy
Prompts | The specie of flower in the picture is rose —
The specie of flower in the picture is orchid ...

ACL 2022 Song et al. “CLIP Models are Few-shot Learners: Empirical Studies on VQA and Visual Entailment”



What if there are two objects?
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Prompt: “The color of the eggplant is []”



Zero-shot transfer of CLIP to color recognition
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CLIP: "In this picture, the color of the lemon is purple.”



Zero-shot transfer of CLIP to color recognition
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Zero-shot transfer from CLIP to unnatural color recognition
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Image Text
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Zero-shot transfer to part-whole recognition
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Figure 12. Example images from Rel3D [9].

Prediction accuracy on Rel3D
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Models Two objects Two objects* Single CAB
CLIP 0.011 0.932 0929 0.961
BLIP-contrast 0.086 0.879 0.846 0.896
BLIP-match 0.123 0.841 0.925 0.859
BLIP-2-contrast 0.138 0.840 0.844 0.851
BLIP-2-match 0.330 0.627 0925 0.648
BLIP-2-caption 0.359 0.558 0.775 0.599
BLIP-caption 0.438 0471 0.862 0.516
BLIP-2-FlanT5 0.604 0.377 0.984 0.386
OFA 0.855 0.078 0.879 0.111




How can we mitigate the CAB?
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Performance on VQA-v2
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Image Captioners Are Scalable Vision Learners Too

Michael Tschannen®' Manoj Kumar® Andreas Steiner®
Xiaohua Zhai Neil Houlsby Lucas Beyer®
Google DeepMind

Abstract

Contrastive pretraining on image-text pairs from the web is one of the most popular
large-scale pretraining strategies for vision backbones, especially in the context of
large multimodal models. At the same time, image captioning on this type of data
is commonly considered an inferior pretraining strategy. In this paper, we perform
a fair comparison of these two pretraining strategies, carefully matching training
data, compute, and model capacity. Using a standard encoder-decoder transformer,
we find that captioning alone is surprisingly effective: on classification tasks,
captioning produces vision encoders competitive with contrastively pretrained
encoders, while surpassing them on vision & language tasks. We further analyze
the effect of the model architecture and scale, as well as the pretraining data on the
representation quality, and find that captioning exhibits the same or better scaling
behavior along these axes. Overall our results show that plain image captioning is
a more powerful pretraining strategy than was previously believed.



Prompt: "a chair with five legs"
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